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SUMMARY 

Fluid dynamical problems are often concephlalizad in unbounded domains. However, most methods of numerical 
simulation then require a truncation of the conceptual domain to a bounded one, thereby introducing artificial 
boundaries. Here we analyse our experience in choosing artificial boundary conditions implicitly through the 
choice of variational fomulations. We deal particularly with a class of problems that involve the prescription of 
pressure drops and/or net flux conditions. 
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1. INTRODUCTION 

Most flow problems of scientific or engineering interest, such as flows past obstacles, around comers 
or through pipes or apertures, are first conceptualized in unbounded domains. This is an idealization 
intended to focus on a phenomenon of interest, fiee of the effects of distant boundaries. We begin this 
paper by reviewing the mathematical formulations for unbounded domains of a class of problems that 
involve the prescription of pressure drops and/or net flux conditions. These formulations are suggestive 
of analogous formulations for bounded domains, which are appropriate when a bounded domain is 
obtained as the truncation of an unbounded domain for the purpose of making a numerical 
computation. 

We focus particularly on variational formulations rather than on their classical counterparts. The 
principal issue concerning variational formulations is not a choice of boundary conditions but a choice 
of function spaces. This choice of function spaces, however, seems relatively straightfo~~d in 
comparison with choosing boundary conditions. We accept what s e m  to be the simplest and most 
natural choice for these function spaces, namely that which leaves functions as free as possible, and 
investigate the consequences through numerical experiments and by drawing out the relationship 
between the resulting variational problems and the ‘artificial’ boundary conditions that are implicit in 
them. 

We often refer to the boundary conditions arrived at in this way as ‘do nothing’ boundary 
conditions, since we do not try to achieve any special effect or boundary condition through restrictions 
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in the function spaces. As it turns out, these boundary conditions are the same as those that have 
already been recommended by Gresho (see e.g. Reference 1) for use along outllow boundaries (for 
more recent references see Reference 2). In our variational formulations these boundary conditions are 
implicitly combined with ‘net flux’ andor ‘pressure drop’ conditions and applied equally along both 
inflow and outflow boundaries. This allows us to consider two types of problems that we show to be 
dual to each other: find certain net fluxes (say through individual pipes in a network of pipes) from 
prescribed pressure drops; alternatively, find the pressure drops that produce these net fluxes. 

There are currently many possible choices of outflow boundary conditions under consideration by 
the computational community, without any completely clear criteria for preferring one over another. 
Gresho’s contention that these ‘do nothing’ boundary conditions are probably the best possible general- 
purpose boundary conditions for use along outflow boundaries seems to be supported from the 
mathematical point of view by their simplicity and elegance within the variational framework. 

Interestingly enough, these boundary conditions have not received much attention from the 
mathematical community. However, as it now seems clear that they have great practical importance, it 
is apparent that they deserve serious mathematical investigation as part of the general Navier-Stokes 
theory. To that end we close this paper by offering what we can in the way of theorems of existence, 
uniqueness, continuous dependence and stability and draw attention to several points of difficulty that 
limit our theorems in comparison with what is known in the case of Dirichlet boundary conditions. 

Our interest in these matters was stimulated by our experience in testing a two-dimensional finite 
element code of Turek3 which is based on the use of discretely divergence-free finite elements. Because 
it uses divergence-free elements, it is natural to formulate problems for this code in the same way as 
they are usually formulated by mathematicians, namely as pressure-free variational problems for the 
velocity using a test space of divergence-free functions. Our analysis begins with formulations of this 
type. However, we also derive equivalent formulations in terms of both the velocity and pressure as 
primary variables and also for two-dimensional situations in terms of the streamfunction. The ‘do 
nothing’ approach leads to the same result in each case. Of course, the mathematical questions studied 
in this paper are relevant to all methods of simulating viscous incompressible flow subject to these 
boundary conditions, whatever the means of enforcing them. 

The contents of this paper are as follows. As already mentioned, in Section 2 we review the theory of 
properly posing problems that involve flux and pressure conditions in unbounded domains. In Section 
3 we give analogous variational formulations for the case of bounded domains and report on our 
computational experience with them. In section 4 we draw out the relationship between these 
variational formulations and the corresponding classical formulations in terms of the velocity and 
pressure. In Section 5 we give equivalent variational formulations in terms of the streamfunction. That, 
of co rn ,  is restricted to the two-dimensional case. In Section 6 we present the beginnings of a 
mathematical theoxy for these problems in both the two- and three-dimensional cases and for both the 
stationary and non-stationary equations. 

2. NAVIER-STOKES PROBLEMS IN UNBOUNDED DOMAINS 
As mentioned above, many problems in fluid dynamics are conceptualized and studied mathematically 
in unbounded domains. For example, in studying flow past an obstacle, one would usually like to 
determine the asymptotic structure of the wake and the force on the obstacle free of the influence of 
distant boundaries. Another example, the one that we are particularly interested in here, concerns fluid 
jets. To fix ideas, consider a plane wall which has a hole in it and let the flow region be its complement. 
We call this an aperature domain; see Figure 1. It is a natural problem in an aperture domain to study a 
jet of fluid that is driven through the aperture by a drop in the pressure from one side of the wall to the 
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F i p  1. Notltioa for flow throughan apertunin an infinitewall 

other. To make the drop in pressure quantitatively precise, one may prove first that the pressure must 
tend to a limit at infinity in each half-space and then consider the difference in these limits. 
Thus the problem of finding a jet through an aperature may be formulated in classical terms by 

supplementing the usual initial-boundary value problem for the Navier-Stokes equations (with 
Dirichlet boundary conditions), 

(14  

uI,,o = yo, ulill) = 0 , u(x, 1) -b 0 as 1x1 + 00, (1b) 

U, + U.VU - VAU + Vp = 0, v - u  = 0, 

with an auxiliary condition on the pressure, 

lim Ax. 1) - lim p(x, 1 )  = P(t),  
1x1 + Qo 1x1 + Qo 

x, to x, >o 

where P(r) is prescribed. 
As it happens, there is another equally good way of determining such jets. Instead of prescribing the 

drop in pressure, one may prescribe the net flux through the aperture. That is, one can replace the 
auxiliary pressure condition (2) by the auxiliary flux condition 

(3) 

where F(t) is prescribed. 
Let us turn now to the variatonal formulations of these problems. Consider first the initial boundary 

value problem (1) without the auxiliary conditions (2) or (3). In the older mathematical literature it is 
often posed for arbitrary domains R, bounded or unbounded, as follows: Find u(t) satisfjhg the initial 
condition u(,,-, = uo such that for all t > 0 

u(1) E J:(n)  = (cp E w:(n) : cplm = 0, v * c p  = O}, 

v(Vu, Vcp) + (Y, + u vu. cp) = 0. vcp E J?(Q). 

(44 

(4b) 
Here (-, .) denotes the inner product in L2(R) and W:(fl) denotes the Sobolev space consisting of 

functions that belong to L2(R) and have first-order spatial derivatives in L2(n). We are using bold face 
to indicate P-valued functions and function spaces. 

Elsewhere in the older literature the same problem (1) is formulated slightly differently as follows: 
find u(t) satisfying the initial condition U I , , ~  = uo such that for all t > 0 

u(r) E J,(Q) = compietion of ~(n )  in w:(Q), (5a) 

V W U ,  Vcp) + (u, + u ' vu, cp) = 0, vcp E J ,  (a). (5b) 
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Here o(Q) = (cp E e(i-2): V .cp = 01, where Cr(Q) is the set of all smooth functions with 
compact supports in Q (i.e. smooth functions vanishing near the boundary and near infinity). The 
completion of o(Q) in W:(Q) consists of those elements of W:(Q) which can be approximated 
arbitrarily closely by elements of D(Q) in the norm 

It was originally thought that the spaces J:(Q) and J1 (Q) are the same and that consequently these 
two formulations of problem (1) are the same. In fact, for certain classes of domains, the three- 
dimensional aperture domain being a prototypical example, these function spaces are different and 
neither of the formulations (4) or (5) correctly represents problem (1). Instead, hidden within the 
formulation (4) is an auxiliary condition on the pressure, namely that the pressure drop must be zero in 
the sense of condition (2), and hidden within the formulation ( 5 )  is another different auxiliary 
condition, namely that the net flux through the aperture must be zero in the sense of condition (3). 

Indeed, if we take an element cp of o(Q) and apply the divergence theorem to it in the left half-space, 
we see that 

cp.ndS = v - c p d x  = 0. 

It follows that elements of Jl(Q), being limits of functions in D(Q), must also have zero net flux 
through the aperture and thus this condition is also contained in the formulation (5 ) .  

The analysis of the formulation (4) is more involved. Let us consider only the case of a three- 
dimensional aperture domain. Then one may construct an explicit function b in J:(Cl) that carries a 
non-trivial net flux through the aperture and normalize it by requiring that 

Is b - n d S  = 1. 

This of course establishes that the two spaces J , ( Q )  and J:(i-2) are different. Further, it can be 
proven that the only real difference between these two function spaces is the single flux canier b. More 
precisely, Jl(Cl) is contained in J:(Q), while on the other hand every element cp of J:(Cl) can be 
written as cp = Fb + $, where JI is some element of Jl(Q) and F = Js cp n dS. 

The original intention for setting the condition (4b) in posing the Dirichlet problem was to insure 
that there is a scalar function p such that -Vp = u, + u - Vu - vAu. However, for that it is enough to 
test with test functions cp belonging to J , ( Q )  or even to its dense subset o(l2). When we test with all cp 
in J:(Q), that includes a test with the flux carrier b. This extra test is in fact a test of the pressure drop. 
It can be shown that (4b) holds with cp = b if and only if the pressure drop is zero. Thus the variational 
formulation (4) of problem (1) actually contains the ‘hidden’ condition that the pressure drop from one 
side of the wall to the other must be zero. 

It remains now to generalize the variational formulations (4) and ( 5 )  so as to intentionally 
incorporate prescribed values of the pressure drop P(r) in (2) or of the net flux F(t) in (3). We will refer 
to the literature for the rigorous analysis and simply state here the final results. 

The correct variational formulation of the prescribed pressure drop problem (l), (2) is: Find u(r) 
satisfying the initial condition uI,= = uo such that for all t > 0 

I, I, <o 

u(t) E J:W, (64  
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The correct variational formulation of the prescribed net flux problem (l), (3) is: Find u(r) = 
F(t)b + v(t) satistjlng the initial condition Y(,=o = YO such that for all t > 0 

42) E J l ( m  (7a) 

v(Vu, Vcp) + (u, + u-vu,  cp) = 0, vcp E Jl(f2). 

Perhaps it should be pointed out that, having constructed b, the real unknown in (7b) is v and that 
equation (7b) can be equivalently written as 

~(VV, Vcp) + (v, + V * V V  + b*VV+ ~.vb. ~ p )  = -v(vb, VC~) - (b, + b*Vb, cp). 

The results that we have described in this section are from the work of H e y w o ~ d , ~ ~ ~  which initiated a 
general study of the relationship between the geometry of unbounded domains and the auxiliary 
conditions that are needed to formulate well-posed problems for the Navier-Stokes equations. Further 
results and references can be found in the works of Solonnikov,6 Maslennikova and Bogovskii’ and 
GaldiaT9 These investigations all depend in an essential way on an analysis of the function spaces that 
enter into the Variational formulations of these problems. One notable result, already given in 
Reference 4, is that J:(Q) = Jl(f2) in the case of an exterior domain. Consequently, pressure drops 
cannot be pnscribed in an exterior domain and solutions of the initial value (Dmchlet) problem (1) are 
uniquely determined without them. In particular, flow past an obstale in an exterior domain must be 
driven by the prescription of a non-zero limit for the velocity at infinity. Thus thm are fhdammtally 
different mechanisms that drive non-trivial flows in different types of unbounded domains. This paper 
concerns the truncation to bounded domains of flows which, in the idealization of an unbounded 
domain, are driven by pressure drops. 

What we are going to do now is change the point of view to that of the computational practitioner 
and use the theory from this section as guidance in formulating problems. 

3. FLUX AND PRESSURE CONDITIONS IN BOUNDED DOMAINS 
To fix ideas in a familiar setting with which we can make later comparisons, let us begin by 
considering a common test problem, that of calculating non-steady flow past an obstable (hem taken as 
an inclined ellipse) situated in a rectangle; see Figurc 2. 

The velocity u(t) is required to be zero on the upper and lower boundaries and on the surface of the 
ellipse, while a parabolic ‘Poiseuille’ inflow profile is prescribed on the upstteam boundary. We denote 
by r the union of those portions of the boundary on which Dirichlet conditions are imposed. Rather 
than giving serious thought to the downstream boundary condition on S, in seeking a variational 
formulation, one can simply decide to ‘do nothing’, i.e. leave the solution and the test space free on 
that portion of the boundary. 

To give a variational formulation of this problem using solenoidal spaces (meaning spaces 
consisting of solenoidal functions), the 6rst step is to construct a solenoidal extension b of the 
prescribed Dirichlet boundary values into the whole of the domain a. Note that since b is to be 
solenoidal, it must carry the incoming flux at the left boundary through the domain and out across the 

Figun 2. Notation for a flow region having an artificial bounduy at the outlet S 
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downstream boundary. The construction of such a function b might appear to be a difficult task. For aid 
in the construction of a flux canier in the continuous case, the reader may consult Theorem 3.1 and 
Exercise 3.4 in Chap. 111 of Reference 8. Fortunately, in computations involving divergence-free finite 
elements, the construction of b can be achieved by simply prescribing the appropriate nodal values 
along the boundary r. This procedure automatically generates a discretely divergence-free extension b 
of the boundary values having support in a one-element-wide strip along the boundary. While in 
practice one need not be conscious of this, we need to realize that it is being done in order to analyse 
the method and the variational formulations behind it. 

Having constructed a solenoidal extension b of the boundary values, a variational formulation of the 
problem indicated by Figure 2, using solenoidal vector fields, is obtained by requiring u(t) = b + v(t), 
where for all t 

v(t) E J:(Q) (q E w;(n): qlr = 0, v . V  = 01, (84  

v(Vu, Vcp) + (ul + u - vu. cp) = 0, vq E J;(Q).  (8b) 
Here, as in Section 2, we use bold face to indicate W-valued functions and function spaces, (. , .) 

denotes the inner product in L’(f2) and W:(iZ) denotes the Sobolev space consisting of functions that 
belong to L2(Q) and have first-order spatial derivatives in L2(Q). In order to discuss both steady and 
non-steady problems simultaneously, we have omitted the initial condition in writing (8). Thus (8) 
represents the Navier-Stokes equations along with boundary conditions. The initial-boundary value 
problem is formulated by addmg the initial condition ult= = uo. The stationary problem is formulated 
by adding the condition that u, = 0. What we are mainly interested in is how the equations are 
combined with boundary conditions and other ‘hidden’ auxiliary conditions in variational 
formulations. 

Corresponding to (8), which is a pressure-fiee formulation using solenoidal spaces, there is also an 
equivalent standard formulation which is expressed Without reference to solenoidal spaces. For this 
formulation the extension b need not be solenoidal (again it can be constructed by simply assigning 
nodal values along the boundary). The requirement is then that u(t) = b + v(t), where for all t 

V(t) E v:(o) { ~ p  E w ~ ( Q ) :  qlr = 01, At) E L2(Q), (94  

(2, v * u)  = 0, Vx E P(Q). (94 
The results of our computations based on (8), like those reported by others on the basis of (9)’ show 

a truly remarkable ‘transparency’ of the downstream boundary when it is handled in this way (Figure 
3). Testing by doubling the length of the computational domain is seen to make almost no discernible 
difference in the flow in the shorter common region. Figures 3(a)-3(c) are different representations of 
exactly the same computations. 

As these results appear highly satisfactory, there seems little reason to ask about the boundary 
conditions that must be implicit in these variational formulations. However, now, to motivate such 
questions, let us consider low-Reynods-number flow through a junction in a system of pipes, again 
prescribing a Poiseuille i d o w  upstream. Figure 4 shows steady streamlines for computations based on 
the same variational formulations as above, each with the same inflow but with varying lengths of pipe 
beyond the junction. 

There seems to be something of a puzzle here in that the flow through the junction is seen to be 
highly dependent on the positions of the artificial boundaries even if they are far from the junction. One 
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Figure 3a Streamlines at Re= 500 after I00  time steps, Stamng from Stokes flow, with constant Poiscuille inflaw, computed in 
domains of diffmnt lengths on the basis of the variational formulation (8). The flow is nearly identical in the shorter common 

@on, indicpting a satisfectory tnatment of the dormsetrm artificial bormdary 

Figure 3@). The same computations rcpresentcd by particle tracing, showing von h h  stnets as usually visualised in physical 
experiments by smoke or the like 

I 

Figure 3(c). Relatin aramhcs . for the same computations, showing the difference Y - i baween the non-linear solution Y and 
the solution ii of the s t a r i o ~ v  Stokca problem on the same domain n 
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6 

Figure 4. Streamlina of flow at Re = 50 with constant Poiseuille inflow, computed using the same variational fornulation (8) as 
in Figurc 3. The net flux through each outlet is highly dependent upon the relative lengths of the downstrram d o n a  

might wonder whether the variational formulation (8) or (9) has some ‘hidden’ condition within it 
analogous to the ‘hidden’ pressure condition (2) in the variational formulation (4) of problem (1). That 
is the point of this discussion. It does have a precisely analogous ‘hidden’ pressure condition. This can 
be seen be examining the ‘ ~ t ~ r a l ’  boundary conditions that are associated with the variational 
formulations (8) and (9), as we shall show in the next Section. In particular, it will be seen that they 
imply that the mean pressure on each free section Si (see Figure 5 )  is zero: 

Thus in Figure 4 the pressure gmhent is greater in the shorter of the two outflow sections, which 
explains why there is a greater flow through that section. This example suggests that we might consider 
formulating problems more generally in terms of prescribed pressure drops and that we need not 
distinguish between sections of inflow and outflow or even know which are which. For a flow region 
with multiple inlet/outlets as indicated in Figure 5 ,  it seems natural to seek solutions for which the 
mean pressure over each outlet section is prescribed. Therefore let us consider the following. 

Pracribedprressure dmp problem. For any prescribed P,@) find u(f) and p ( r )  such that 
u, + u-vu - V A U  + v p  = 0, v - u  = 0. (lea) 

It is this type of problem that needs to be considered in order to determine the net flux through each 
of various inlets or outlets given the pressure drops between them. One can even ask whether there will 
be a positive net inflow or outflow through some particular duct for given prescribed values of the 
mean pressures. Notice that at this point we do not want to commit ourselves to any particular 
boundary conditions along the outlets Si. Our only stated objective is to achieve prescribed differences 
between the mean pressures across the various outlets. It is implicit that we want to achieve this by 
whatever boundary conditions work best in some vague sense. We hope to find these by posing the 

Figure 5. Notation for flow regions having utificial boundaries at multiple inlet/outlets S, 
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problem variationally in the most natural possible way. What would that formulation be? For guidance 
we look to the analogous problem (l), (2) for unbounded domains. Its variational formulation (6) can 
be copied word for word. 

Yariational pressure drop problem (with solenoidal spaces). Find u(r) such that for all r 

u(r) E ~ : ( a )  = {Q E wi(n): cplr = 0, v ' c p  = 0). (1 la) 

VQ E J:(n). 

It is easy to see that a variational formulation such as this is mathematically well posed. It is 
somewhat more difficult to translate it precisely in terms of boundary conditions and the like. When 
one does, as in the next section, it will be seen that the conditions (1 1) imply something more along the 
free boundary S than was asked for in (lob). Therefore problem (10) by itself does not quite form a 
well-posed problem. We note too that a more general class of functionals can be introduced on the right 
side of (1 1 b). Such more general problems are briefly considered at the end of Section 4. However, the 
simple case considered here seems to have a very wide range of useful applications. It is interesting 
that this problem, in which conditions for the pressure are prescribed, is so easily set in a pressure-free 
variational formulation. The analogue of problem (1 1) in terms of both primary variables is posed as 
follows. 

Yariational pressure drop problem (without solenoidal spaces). Find u(r) such that for all t 

u(r) E v:(n) = (cp E w:(Q): qlr = 01, p ( r )  E ~'(n), (124 

( x ,  v * u) = 0, vx E L*(Q). ( 124 
The prescription of pressure drops is not the only natural way of posing problems for flow through a 

system of ducts like that of Figure 5.  Indeed one may wish tofind the pressure drops that are required 
to achieve a desired netflux through each of various ducts. Thus we also consider the following. 

Prescribed netflux problem. For any prescribed F,(r) satisfying Cj Fi(r) = 0 find u(r) and p ( f )  such 
that 

U, + U.VV - VAU + Vp = 0, v.u = 0, (134 

We remark that as in posing problem (1 0) above we do not want to commit ourselves at this point to 
the details of the boundary conditions on Si. 

To incorporate these flux conditions into a variational formulation of the Navier-Stokes equations, 
we look again to the analogous problem (l) ,  (3) for unbounded domains. Its variational formulation (7) 
can be copied exactly. One first constructs solenoidal flux carrim bi, i 2 2,  Carrying a unit net flux 
fiom an arbitrarily chosen reference inlet/outlet S1 to each of the others. Thus, if there are three 
inlet/outlets (see Figure 5), let bi, i = 2 ,  3, satisfy 
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Then an appropriate formulation is the following. 

for all r 
Voriarional net puX pmblem (with solenoidal spuces). Find u(r) = F2(r)b2 + F3(r)b3 + v(r) such that 

cp E w;(n): cplr = 0,v .q  =o,  cp-n d~ = O,Vi 
JS, 

v(vu, Vcp) + (u, + u * vu, cp) = 0, vq E J, (Q) .  ( 15b) 
If one is not using solenoidal spaces, the functions bi are not required to be solenoidal and the 

Variational net flux problem (without solenoidal spaces). Find u(r) = Fz(f)bz + F3(r)b3 + v(r) and 
appropriate formulation is as follows. 

p(r) such that for all f 

4 r ) E  v,(n)= cp~w:(n):cpl,-=~, c p . n d s = ~ , ~ i  ] , P ( 0  E L2(Q), ( W  I, 1 
( 16b) 

Q, v - u) = 0, vx E Lqn). (lac) 

v(vu, Vcp) + (u, + U . V U , c p )  - (p. V*cp) = 0, vq € V,(Q), 

These formulations too are examined further in later sections. Again it will be seen that these well- 
posed variational problems contain further boundary conditions along the free boundary S than asked 
for in (13b). Thus problem (1 3) by itsclf is not quite well posed. Figure 6 presents the results of several 
typical computations for problems with prescribed net fluxes or pressure drops based on the 
formulations (1 1) and (1 5).  

The problem of a jet through an aperture in a wall can be regarded as a prototypical problem for 
computational procedures based on the variational formulations (1 1) and (15). The computational 
results shown in Figure 7 are the first of this type that we know of. 

Figurc 6(a). wid steady computations based on the pressure drop formulation (1 1). Let P, denote the pnsCribad mean pssurc 
over the inlet/outlet S, numbered as in Figure 5. For the computation on the left, P I  = 0, P2 = 1.5 and P3 = 2. This produces 
lnflow m s s  Sz and S,. For the compuation on the right, P I  = 0, P2 = 0.5 and P3 = 2, which produces outflow through both S1 

and &. The Reywlds number is approximately 50 

Figurc 6@). Streamha of Aow pasIan inclined ellipse at Re = 500 based an the Wriatid flux formulation (1 5 )  with both 
upstream auddowmtmmbouadariesfree. Except forthe fies upsbeam bomdary, all paramaers arc the same as in Figure 3. 

Approximately Wh of tbe flux passes undcr the ellipse comparsd with appmximatcly 50% in Figure 3 
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Figure qc). Formulations (1 1) and (I 5) pn combined here. lmey are combined in an obvious way (introducing a llux carria from 
SI exiting either S2 or S,) in this test of the Bernoulli principle. The mdts of three computations shown. with enlargements of 
the upper duct. In each casc an incoming net flux Fl is @bed mss a free boundary S1 on the left while the mean p n m  
P2 on a fm boundary S, at the top of the small upper inlet/outlet is pnxribcd to be equal to the mean pressure P3 on a free 
boundary S3 at the right. In the first casc, at very low Reynolds number, Re= 10. t h m  is outflow at S,. In second case, at 
Re=SO, there is inflow at S, as predicted by Banoulli's principk. In the third case, at Re=lOOO, t h e  is inflaw at S, and a 

complex time-depmdent vortex smcture in both the uppa and downstream duas. See Figm 6(d) for an cnlargcmcnt 

Figure qd). Enlargement of patt of F igw qc) 



336 J. G.  HEYWOOD. R. RANNACHER AND S. TUREK 

Before we began our numerical experiments with free inflow boundary conditions, we were 
concerned that such problems might be quite unstable already on the continuous, theoretical level and 
that this instability might limit their computational usefulness to very low Reynolds numbers. For 
instance, it seemed possible that the upstream Dirichlet condition in Figure 3 might be an important 
stabilizing factor, for lack of which the computations shown in Figures q a )  and 6(b) would somehow 
collapse. This concern was heightened by a look at the existence theory for such problems. In Section 
6 we present the basic estimates that we know of upon which an existence theory can be given for 
steady and non-steady solutions of prescribed net flux and pressure drop problems. It will be seen that 
some of these estimates require assumptions about the smallness of the data that one does not 
encounter in dealing with Dirichlet boundary conditions, giving the impression (we have not explicitly 
evaluated the constants) that these theorems may be valid only for very small data. Thus, anticipating 
difficulties that have not actually arisen in our computations, we looked at alternative variational 

Figure 7(a). Streamlines of a steady jct through an aperture in a wall (a line segment) for Re = 1, 10 and 100, based on the 
variational formulation (15) for flow with a pnscribcd net flux. The fluid adheres to the linear wall, while the left and right 

semicircles arc free artificial boundanes 

Figure 7@). Streamlines of a am-steady jet through an aperture in a wall (a line segment, b a d  on the variational formulation 
(1 1) for flow with a prescribed timedependent p n s w e  drop f i t ) .  The initial velocity is YO = 0 and P(t) is the step function 

f ( t )=  1 for0 < t < 40, P ( r ) = O  for41 < t d 80, P(t)= 1 for 81 < r Q 120 andP(t)=O for t 2 121 (with t in  time steps). The 
figures are for r=20,60 100, 140,200 and 500. This produces two short bursts (‘puff-puff) through the hole, which are 

visualized by particle tracing in Figure 7(c) 



ARTIFICIAL BOUNDARIES FOR INCOMPRESSIBLE N-S EQUATIONS 337 

Figure 7(c). The same computatioaP as m Figure 7@), visualized by tracing particles that are mtmduccd at the apermn during the 
'puffi. The d t  is two 'smoke rings' that leap- each &ex and m t u a l l y  exit and the free artificial boundary on the right 

formulations of flux and pressure problems using symmetrized 'conservative' forms of the non-linear 
term. Using these forms, the non-linear term vanishes identically in the energy estimates, facilitating 
existence theorems for less restrictive data. Of course, changing the variational form also changes the 
problem that is being solved and may render it unsatisfactory in other respects. That seems to be the 
case. 

One is led to the first of the conservative forms we are referring to by using the identity 
V(i luI2) = u - ( V U ) ~  to write the Navier-Stokes equations 8s 

Y~ + U . V Y  - u . ( V U ) ~  - VAU = -V(p + 1 ~ 1 ~ )  = -Vj. (17) 

This leads to a variational formulation in which the term (u-Vu,cp) is replaced by 
(u Vu, cp) - (cp Vu, u). On the right side the additional term is absorbed into the pnssurr, giving 
what is referred to as 'total pressure' or 'Bernoulli pressure'. The total pressure is constant along 
streamlines in Euler flow and thacfore is an important quantity in some high-Reynolds-number 
situations. For example, it is the 'Bernoulli principle' that explains the inflow through the central duct 
of Figure 6(c). The reason that the additional term on the left side of (17) facilitates the existence 
theory is that when (17) is multiplied through by Y to obtain an energy estimate, the non-linear term 
disappears as if one were considering homogeneous Dirichlet data. Thus motivated, we consider the 
following alternatives to the problems (1 1) and (15). 
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Figure 8. Streamlines and vector plots of pipe flow at Re = 50 with an artificial outAow boundary. The upper figures are based on 
the standard formulation (8) and the lower figures on the total pressure formulation (19) 

Variatiogal total pressure dmp problem (with solenoidal spaces). Find u(t) such that for all 
t ,  ~ ( t )  E J ,  (SZ) and 

%national net flux problem involving total pressure (with solenoidal spaces). Find 
u(t) = F2(t)b2 + F3(t)b3 + v(t) such that for all t, v(t) E JI(C2) and 

v(Vu, Vcp) + (ut + u - v u  - u-(VuT,cp) = 0, vcp E J,(O). (19) 
It will be seen in the next section that the pressure condition corresponding to the problem (1 8) is no 

longer (1 Ob) but rather 
. c  

Another conservative form which is often taken for convenience in analysing numerical methods is 
obtainedbyreplacing(u-Vu,cp) by;(u*Vu,cp) -f(u*Vcp,u)in(llb)and(15b)(seeReference 10, 
p. 284). This gives a legitimate weak form of the Navier-Stokes equations, because 
(u Vu, 9) = :(u Vu, cp) - ;(a Vcp, u) if cp is a solenoidal test function which vanishes on the 
boundary. When the variational equation (1 lb) is changed in this way, the new pressure condition 
corresponding to (lob) is 

I 
Figure 8 presents the result of a typical computation based on the formulation (1 9). 

Clearly the boundary conditions that are implicit in the total pressure variational formulation (19) are 
not very satisfactory for the problems that we have been considering, although they might perhaps be 
satisfactory for some other types of problems. To reason Mer about this, it is necessary to identify 
the boundary conditions which are implicit in the various formulations that we have been considering. 

4. ASSOCIATED BOUNDARY CONDITIONS 

It will be shown here that for smooth solutions the variational formulations given above, with and 
without use of solenoidal spaces, are equivalent and that the prescribed pressure drop problem also 
admits a formulation in terms of classically prescribed boundary conditions. Solutions of the 
prescribed flux problem satisfy the same boundary conditions, but with an unknown pressure drop. 
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Hence the prescribed flux problem does not have a hlly equivalent formulation in terms of classical 
boundary conditions. 

Let us consider first the variational pressure drop problems (1 1) and (1 2) and show that they are both 
equivalent to the classical problem (28) below. Referring to the solutions of these three problems as 
Jy-, V:- and C*-solutions respectively, it is only necessary to verifL that Y:-solutions c Jy-solutions 
c C*-solutions c Y~-solutions. It is obvious that V:-solutions c J:-solutions. 

To show that J:-solutions are C*-solutions, integrate (1 lb) by parts to get 

Then, using test functions that vanish on the boundary, one may conclude that u, + u - Vu - vAu is 
the gradient of a smooth function p which can be defined by curve integxals 
p(x)  = J-L(u, + u Vu - vAu) * ds independent of the path. Indeed, the integral 
&(u, + u Vu - v h )  ds around any closed curve C in R can be approximated by volume integrals 
(u, + u * Vu - vAu, cp), where cp is a smooth solenoidal function with support confined to a small tube 
about the curve C, having its streamlines closely aligned with the curve C and carrying a unit net flux 
in the direction of C. Since these volume integrals vanish by (22), so must the curve integrals and 
hence u, + u Vu - vAu = -Vp for some scalar function p .  Thus one may set 

in (22) to get 

[va,u + (Pi - p)n] * cp ds = 0, vq E J:(a). F I, 
Writing u and cp near the b o u n d a ~ ~  in terms of normal and tangential components, i.e. u = U,T + u,n, 
(24) implies 

a,u,cp, dS = 0, VQ E J:(R). F J ,  
Our first conclusion from (25), which is obtained by testing with q E Jl(R), is that for each S, there 
exists a constant ci such that 

va,,u, + (Pi - p )  = c, on S,. (27) 

Indeed, if x1 and x2 are any two points on S,, one can connect them by a curve C which is normal to S, 
at each of them. Then one can consider flux carriers cp with support confined to a small tube about C, 
with a unit net flux into R near x1 and out of R near x2. Hence, arguing by letting the radius of the tube 
shrink, (25) implies that va,u, + (Pi - p )  is the same at x1 and x2, thus proving (27). 

So far we have only been using test functions cp E J,(n.  Such functions must satisfL Js cp n dS = 0 
on each S, and therefore cannot cany flux from one outlet to another. However, the full test space 
Jy(R) for (25) also contains flux carriers from one outlet to another, such as the functions bi used in 
formulating the variational prescribed &x problem (1 5). Using such flux carriers as test functions and 
arguing as before, we conclude that the constants ci are all equal to each other. We are free to choose 
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the value of this common constant, because the pressure has so far only been determined up to a 
constant. We set ci=O in (27). 

Finally, (26) implies that anu, vanishes identically at every point of any of the Si. Indeed, if x E Si, we 
can construct a closed curve C in fi which just grazes the surface Si at x in any tangential direction. 
Then, arguing as before, with flux-canying test f ictions cp that approximate C, (26) implies that 
anu7 = 0 at X. 

What we have shown is that any smooth solution of the variational problem (1 1) is also a solution of 
the following. 

Classical pressure drop problem. For any prescribed constants Pi find u(t) and p(t)  such that for all t 
ut + U - V V  - VAU + V p  = 0,  v - u  = 0,  (284 

It will be shown below, following the statement of Theorem 1, that if Si is a plane section 
perpendicular to a cylindrical section of pipe as in Figures 2-6, then the boundary condition (28b) 
implies that Pi is in fact the mean pressure across Si as originally desired in posing problem (1 0). 

At this point we have shown that J:-solutions C C*-solutions and it only remains to show that C*- 
solutions c V:-solutions. To this end, suppose that u,  p satisfies (28). Then it is easily seen that (28b) 
implies 

vanu + (P, - p ) n  = 0 on each Si. 
Hence, multiplying (28a) by cp E V:(Q) and integrating by parts, one obtains 

V ( v U ,  VQ) -t ( U t  -b U 'VU, Q )  - (p, V ' Q )  = V a n U ' Q  ds - PQ'n ds I, I, (6) =-c 
i 

which is just (1 2b). The conditions (1 2a) and (1 2c) are obviously satisfied. Thus we have proven the 
following. 

Theorem 1 

For smooth solutions, the three formulations (1 l), (12) and (28) of the prescribed pressure drop 
problem are all equivalent to each other. 

It was our intention in formulating problems (1 1) and (12) to obtain solutions that satisfy the 
pressure condition (lob). To check whether this condition is satisfied, we integrate the second of 
conditions (28b) to obtain for each i 

The second term on the right can be evaluated using the relation V - u = 0.  If Si is a plane section 
perpendicular to a cylindrical pipe as in Figure 2-6, then this term vanishes identically and (29) 
reduces to (lob) as desired. However, if Si is a semicircle as in Figure 7, then the second term on the 
right side of (29) equals - vF/n?, where r is the radius of the semicircle and F is the (unknown) net 
flux out of Q across Si. The corresponding value for a three-dimensional hemisphere is - v F / d .  
Thus, in calculating flow through a hole in a wall on the basis of the prescribed pressure drop problem, 
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there is a small discrepancy between the pressure drop which was intended and that which is realized, 
but it decreases rapidly as r is increased. 

We make several ha1 remarks concerning the striking success of the boundary conditions (28b) on 
the artificial boundaries Si. First, if a stmight section of pipe is bounded at its ends by perpendicular 
sections S,, then the unique steady solution of (28) is Poiseuille flow. We imagine and intend (perhaps 
the reader has questioned this) that the domains in Figures 2-6 are truncations of large domains that 
continue as stmight sections of pipe for some distance beyond each of the Si. Having this intention, any 
boundary condition which is not satisfied by Poiseuille flow would probably be found unsatisfactory. 
Second, realizing that no artificial boundary condition can do a perfect job in non-trivial situations, we 
find it very satisfying that (28b) appears to work so well in calculating flows like those of Figures 6 
and 7. 

Next we consider the prescribed net flux problem and show that its variational formulations (1 5) and 
(16) are equivalent. Referring to the solutions of (15) and (16) as JI-solutions and Vl-solutions 
respectively, we first show that Vl-solutions c J1-solutions. 

Suppose that a vector field u(f) can be written as u(t) = F2(t)b2 + F3(t)b3 + v(f1 with v(f) and the bi 
satisfying the conditions of problem (1 6). Then v(t) E V,(Q) and neither v(f) nor the bi need be 
solenoidal as required in problem (1 5). However, choosing solenoidal flux caniers bi satisfying, the 
conditions (14) required in problem (15). we can write u(t)=F2(r)b2+F3~++(f), where 
?(?) = v(f) + F2(t)(b2 - b2) + F3(f)(b3 - b3), and easily check that ?(t)  E J1(f2). Thus a Vl-solution 
u(r) can be written in the form required of a JI-solution. Finally, it is obvious that the variational 
equation (1 5b) follows from (1 6b). Thus we find that Vl-solutions are also JI-solutions. 

Now suppose that u(r) is a J1-solution. Then we can write u(t) =F2(t)b2 +F3(t)b3+v(t), with v(t) 
and the bi satisfying the conditions of problem (15), which are only stronger than the conditions of 
problem (16). It is also obvious that (16c) is satisfied. Finally, arguing as we did in going from (22) to 
(23), we conclude that there exists a scalar f ic t ion p such that u, + u V u  - vAu = -Vp. Multiplying 
this by Q E V,(O)  and integrating by parts, we obtain the variational equation (16b). Thus J1-solutions 
are also Vl-solutions. 

To identify the boundary conditions that are implicit in these problems, it is easiest to consider the 
V,-formulation (1 6). Integrating (1 6b) by parts, we obtain 

(u, + u * VU - VAU + Vp,  Q )  + ( v t l , ~  - p n )  . Q dS = 0, VQ E VI (a). (30) I, 
Testing with hc t ions  Q that vanish on the boundary, one sees that u, + u * u Au - vAu + V p  = 0 
and hence that the first integral in (30) vanishes for all Q E V , ( a ) .  Then testing with Q that are non- 
zero on Xl,  we easily conclude that 

for some constants ci. The argument for this can be made more simply than that for (28b), because the 
test functions in V,(Q) need not be solenoidal. Notice, however, that since they are constrained by the 
condition ss Q n dS = 0, we can only show that p - amun is constant on each Si and not necessarily 
zero. IntegAting the second of conditions (31), we get 

It is evident that the boundary conditions are the same for the prescribed flux problem as for the 
prescribed pressure drop problem, except that the mean pressures ci which appear in them are 
unknowns. We have proven the following. 
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Theorem 2 

For smooth solutions, the two formulations (15) and (16) of the prescribed net flux problem are 
equivalent to each other. Their solutions satisfy the same boundary conditions (3 1) as solutions of the 
prescribed pressure drop problem, but with mean pressures cxt) that are not known in advance of 
solving the problem. 

Using the same methods as above, we obtain the following. 

Theorem 3 

problem involving total pressure, (19), both satisfy the boundary conditions 
Smooth solutions of the variational total pressure drop problem (18) and of the variational flux 

ulr = 0, (P + f I M I ~  - va,u,,)Is, = P,(t), anu7 = 0 on Si. (33) 

Howcver, for the flux problem the pressures Pxr) are not known in advance of solving the problem. 
Similarly, if one replaces the non-linear term (u Vu, q)  in the variational pressure and flux 

problems (1 1) and (15) by the symmetrized fonn f (u Vu, cp) - 4 (u - Vcp, a), then the associated 
boundary conditions are 

ulr = 0, (P + f Iun12 - vamun)Is, = Pi(?). vanu7 = funul on si. (34) 

It is evident upon examining the boundary conditions (33) and (34) that they are not satisfied by 
Poiseuille flow. Thus their poor performance in the computation shown in Figure 8 was to be expected. 

Let us briefly consider the variational formulations of problems with artificial boundaries when there 
are non-zero forces. As a first example, consider flow in a rectangle under the influence of a 
gravitational forcefwith the Dirichlet boundary condition u = 0 on the entire boundary XI Of course, 
the unique steady solution is u = 0 in R. Now let us divide the rectangle into left and right halves by an 
artificial boundary and formulate the Navier-Stokes problem with a gravitational force for the left half 
alone by adding the tern (f, cp) to the right side of (8b) or (1 1 b). The result of a typical computation is 
shown in Figure 9 and certainly u = 0 

The reason that we have lost the correct solution u=O is that the pressure associated with it, 
pO=Gf  ds = Pf (x) ,  is not constant on S and therefore u and p together do not satisfy (28b). This is 
easily rectified. In deriving the bounda~~  conditions (28b), we could have considered a general scalar 
function PAX, r )  by including it under the integral sign in (1 lb). The derivation of (28b) remains 
exactly the same. Thus, to get the correct solution u = O,p(x) = Pf(x), it is evident that the term 
- J+P'~pan dS should be added to the right side of the variational fonnulations that we have been 
considenng. 

In considering more interesting problems such as heat convection modelled by the Boussinesq 
equations, in whichf is essentially the unknown temperatwe, there is probably no really ideal way of 
compensating for the variations in pressure along an artificial hundary. However, the simple example 
just considered suggests the following simple strategy for a partial compensation and shows that 
nothing simpler can be useful in avoiding the effects demonstrated in Figure 9. One may calculate at 
every time or periodically a spatially constant mean force f = IQ-' J,fdx, from which one gets a 
simple, linear mean pressure P(x,  t) = $ f ( r )  - ds which can be used to define a compensating 
functional - Jan Pq n dS for inclusion on the right-hand side of any of the variational formulations 
that we have considered. Alternatively, one can substract Vp(x, r )  fromfin the variational equation. We 
have not experimented with computations of the Boussinesq equations. 

Let us conclude this section with some general remarks about the relationship between variational 
formulations and their associated boundary conditions. One always starts with a basic function space. 
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F i p  9. mid stcady state mmputaliioa restricted to tht kft half of a mtangle with an atificirl boundary nod a 'gravitatid' 
fomf=(O, - The ReynolQ number is approximately 10 

In the solenoidal setting it is J:(Q) or a subspace of it defined by fiuther homogenems constraints 
such as J" cp .n ds = 0, cp nls, = 0 or cp ?Isi = 0. Let us take first J:(Q itself and consider the 
problem ok finding u E J:(Q satisfying 

~ ( D u ,  Dcp) + (u, + U * V U  - u . ( V U ) ~  -f, cp) = (W + au)*cp dS I, (35) 

for all cp E J:(Q), where Du = ~ ( V U  + Vu') is the deformation tensor, W(x, t )  is a prescribed force 
density on and a 2 0 is a prescribed constant. Then, as in deriving (28b), one obtains 

for all cp E J:(n)  and hence the boundary condition (for the effect see Figure 10) 

2n .Du - (p + luI2)n = W + au on each 8,. (37) 

Now, if the term -u (VU)* is omitted from (39 ,  then the term 4 1uI2 di pears from (36) and (37). 
If the term v(Du, Dp) is replaced by v(Vu, Vcp) in ( 3 9 ,  then the term (Vu) disappears from (36) and 
(37). Similarly, if W or ou is omitted from (35), then it disappears in (36) y d  (37). Next consider the 
effect of constraining the function space by taking a subspace j,(.n> c J ,  (Q) as the basic function 
space. The first effect is that the constraint is imposed on u, since Y is then sought in j ,  (Q). However, 
this is balanced by a second fieeing effect due to there being fewer test functions available in drawing 
conclusions fiom (36). Thus the constraint Jsi cp n ds = 0 has the effect of introducing an unknown 
constant cfl into (37), 8s we saw above in considering the net flux problem. The constraint cp - "Is, = 0 
loses the normal component of the boundary condition (37) altogether. The constraint cp * +, .= 0 loses 
the tangential constraint of the boundary condition (37). There are many interesting possibilities; see 
e.g. R e f m c e  11, Chap. 4.6. 

T 

Figure 10. Vector plots of pipe flow at Re=% with an pmficial outflow bolmduy. 'Ihe Computation ioa the left i s  b n d  on the 
standard variational formulation (8). 'Ihe computation on the right is made similarly but with the term v(Vu, Vcp) in (8) replaced 

by v(Du, Dsp) where D is the deformation tensor 
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5 .  STREAMFUNCTION FORMULATIONS 

It is often useful to formulate two-dimensional problems in terms of a streamfunction. The pressure 
drop and net flux problems are very conveniently posed in this way. This raises the question of whether 
solutions obtained using the natural ‘do nothing’ inflow/outflow boundary conditions in the 
streamfunction formulation really coincide with those of the corresponding formulations in the primal 
variables. The following analysis shows that they do. 

In two dimensions the portion of the boundary denoted by r in Figure 5 is the union of three 
disconnected components, r = UT,, and the full boundary can be oriented in the counterclockwise 
drection by a tangent vector 7 as shown in Figure 11. 

We denote the values of a scalar-valued fhction 4 at the two ends of each outlet Si, oriented as 
mentioned, by $il and &. Also, curl+=((az4, - a,#)’. Below, the solutions of the prescribed 
pressure drop and prescribed net flux problems are sought in the form u = curl$. Since $ is constant 
along streamlines in such a representation, it is referred to as a streamfunction. 

If C is any smooth curve in fi going from a first point x l  to a second point x2 and if 7 is the unit 
tangent vector to C oriented in the forward-looking direction and n is the right-side normal 
n = ( T ~ ,  - T,), then the net flux of curl4 crossing C from left to right between xI and x2 is 

Consequently, if cp = curl4, the right side of (1 1 b) can be expressed as - El 
show that the pressure drop problem (1 1) is equivalent to the following. 

- Below we 

Variational pressure dmp pmblem (streamfirnction formulation): Find +(t) such that for all t 

v(VcurlJI, Vcurl4) + (curl$, + curl$ - VcurlJI, curl4) = - Pj(412 - $ i l )  (39b) 
i 

for every E %(a) 
The cf in the definition of %(Q) are arbitrary constants. However, one of them can be fixed without 

losing generality in the vector fields curl& Requiring one of them to be zero, say c1 = O ,  h y  the 
advantage of malung JJV2&)L~(n) a norm on $(Q). Below, we will show that curF@n) = J ,  (Q), 
from which it is obvious that the formulations (1 1) and (39) are equivalent. 

To formulate a streamfunction equivalent of the prescribed net flux problem (15), we need to 
introduce streamfunction analogues of the flux carriers b;. Let us assume that there are three 
inlet/outlets. Then, refemng to Figure 11, we take I(lt, J13 E G(f2) satisfying 

JIzIr, = 1, JIz1r2.,ur, = O  and J131r,urz = 1, JI~II-, =O.  (40) 

Figure 1 1. Notation for flow regions having artificial boundaries at multiple inlet/outlcts S, 
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It is easily seen using (38) that we obtain flux carriers bi satisfylng (14) by letting b, = curl$,. (i = 2, 3). 
Thuswemayseekuintheformu=curlJlWithstreamfunctionJI ~ I I ~ ~ c ~ o I I ~ J I = F & ~ + F ~ J ~ ~ + ~ ,  
where curb has zen, net flux across each Si. 

Yariutional netflux problem (stream~nctionfonnulation). Find $(t) = F2(t)$2 + F3(t)J13 + q(t) such 
that for all t 

q(t) E H2(Q) (4 E w,Z(Q): an4lr = 0, 4lr = 01, (4 1 a) 

v(Vcurl$, Vcurl4) + (curl$, + curl$ Vcurl$, curl+) = 0 (4 1 b) 
for every E H2(Q). 

It is obvious that the problems (41) and (15) are equivalent if curW2(Q)=Jl(Q). 

Theorem 4 

curN(f2) = J:(Q) and curlHz(R) = J,(a). Therefore the two-dimensional prescribed pressure 
drop problems (39) and (1 1) are equivalent and so also are the prescribed net flux problems (41) and 

First, it is clear that CUM c J:(a). To prove the reverse, let cp be a given element of $(a) which 
E %(Q) such that curl4 = Q, we are 

(15). 

we assume at first to be smooth. In seeking a function 
motivated by (38) to choose an arbitrary fixed point X, E fi and set 

where C is an arbitrary piecewise smooth curve in fi h m  xo to x. It is clear that 4 ( x )  is independent of 
the choice of C, since V Q = 0. It is also easily checked that curl4 = cp. Finally, 4 E %(a), since 
V 4  = 0 on each component of r. 
Now, dropping the smoothness assumption on cp, suppose that Ilv(Qk - Q)JILz(~) -+ 0, where the Q k  

are smooth elements of J:(Q). Constructing 4k tiom 4pk by the formula (42), we have 4k E G(Q) and 
curl& = (Pk. Now {Vcurl&) is a Cauchy sequence in L2(Q) with limit Vcp. Therefore +k is a Cauchy 
sequence in %(a) with limit 4 satisfymg curl4 = cp provided that llVcurl- IlrZ(n) is a norm in %(a). 
As mentioned following the mtmduction of %(Q) in (39), we may specifi that c1 =O. Making that 
specification here, we obtain I1411,pcn, <cllV2411Lqn) for 4 E e(Q) by Poincad’s inequality and then 
IIV2411Lqn) = IIVcur1411LZ(n) by the identity Vcurl4: Vcurl$ = &, aiil,c#d,a,$. This completes the 
proof that curG(Q) = J:(Q). 

Finally, we see that carW2(Q) c J,(Q),  because the condition 4Ir = 0 combined with (38) implies 
J”, curl4 .n  ds = 0. Also, we see that J l ( Q )  c curlH2(Q), because given cp E J,(Q) and defining 4 
by (42) with xo E r, the conditions Js, Q n ds = 0 combined with (38) imply 4lr = 0. This completes 
the p m f  of Theorem 4. 

Since the problems (39) and (41) are equivalent to the problems (11) and (15) respectively, the 
corresponding natural boundary conditions satisfied by smooth solutions along the inlet/outlets must 
coincide. This, however, leads to something of a puzzle. The primal solution { u, p}, say of the pressure 
drop problem (1 l), satisfies the 6rst-order natural boundary conditions (28b), 

anUrls, = 0, (P - vanun)ls, = pi. (43) 

On the other hand, the corresponding streamfunction solution JI is determined through a fourth-order 
problem, similar to a plate-bending problem with part of the boundary left fiee. It therefore necessarily 
satisfies two natural boundary conditions along the inlet/outlets, one of second order and one of third 
order. This thirdsrder boundary condition for $ would seem to result in a second-order boundary 
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condition for u = curl$, in contrast with what are only M-order conditions in (28b). This apparent 
paradox is resolved as follows. First, integrating by parts in the variational equation (39b) and varying 
the test function in I$(Q), one obtains in the usual way the necessary condition 

A*$ - A$, - curl(curl$ * curl$) = 0 in a. (44) 
The remaining boundary integral takes the form 

where A($) = -a,A$ + an$, + 7 * (curl$ * Vcurl4). For a smooth solution u =curl$ there holds the 
identity 

-vcurlA$ + curl$, + curl$ Vcurl$ = -vAu + I(, + u Vu = -Vp, (46) 
yielding -va,A$ + a,,$, + T - (curl$ * V+) = -hp on aR. Thus integrating by parts over aR yields 

(47) 

This implies that %$Is, = 0 and (vans,$ -p)ls, = -Pi, which is just the boundary condition (43) 
expressed in terms of the streamfunction $. 

In Theorems 1 and 2 we decided not to burden the reader with explicit constructions of the 
solenoidal test functions, since the constructions are somewhat technical in three dimensions. In two 
dimensions, however, they are easily constructed using streamfUnctions. According to (38), the net flux 
of curl4 across any curve joining two points x1 and x2 is just ~ ( x z )  - 4(x1). Thus one obtains flux 
carriers curl& around a closed c w e  C by simply mollifying a step function 4 that equals zero inside 
C and unity outside C. Similarly, if C is a curve joining points on Si and (i =J or i f J ) ,  one gets a 
flux carrier from Si to 4 by mollifying a step function which equals zero on one side of C and unity on 
the other side. 

6. EXISTENCE, UNIQUENESS, CONTINUOUS DEPENDENCE, STABILITY 

We will give a brief account of the existence theory that we see for the problems that have been 
considered in this paper. It is less complete than for Dirichlet boundary conditions because of a 
difficulty in estimating the energy that enters the domain across the boundary when there is an inflow. 

This difficulty is avoided, however, if one uses the conservative forms of the non-linear term which 
were discussed at the ends of Sections 3 and 4. Then the existence theory proceeds almost exactly as 
for Dirichlet conditions. With a few seemingly appropriate restrictions on the domain, one gets smooth 
steady solutions (but without any assurance of their stability if the data are large) for any prescriptions 
of steady net fluxes Fi or pressures Pi. For suitably smooth initial values and timedependent fluxes 
F&) or pressures P&), regardless of their size, one gets a global (i.e. existing for all r 2 0) weak 
solution which is smooth on an initial time interval 0 < t < T In the case of two dimensions, T= 00. In 
the case of three dimensions, T = co if the data are sufficiently small. Since the proofs differ very little 
fiom those for Dirichlet conditions, there is no need to present them here. 

Tinning to existence questions connected with the standard form of the non-linear term used in 
problems (1 1) and (1 5 )  and their equivalents, our results differ from those above in the following ways. 
First, we have been unable to obtain an u priori bound for the Dirichlet norms of steady solutions even 
when the data are small. The technique of Lexay and Hopf for bounding the Dirichlet norm in the case 
of non-homogeneous Dirichlet data is of no avail even for the prescribed net flux problem, because it 
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does not apply to the most troublesome term. Despite that, we are able to prove the existence of smooth 
steady solutions with bounded Dirichlet norms in the case of small data (the prescribed Fi or P,). One 
gets an impression from the proof, however, that the data may have to be very small. For the non- 
stationary problems we get, as before, the existence of a smooth solution on an initial time interval 
0 < t < T, with T= 00 if the data are sufficiently small. However, if the data are large, we have not 
proven the global existence of even a weak solution, even in two dimensions, as there seems to be a 
basic difficulty in getting a global energy estimate. 

To prove an existence theorem for a Navier-Stokes problem, either steady or non-steady, it is 
convenient to construct the solution as a limit of Galerkin approximations in terms of the 
eigenhctions of the corresponding steady Stokes problem. This use of the Stokes eigenfunctions 
originated with Prodi" and was further developed by Heywood" and Heywood and Ranna~her. '~ 
Reference 13 and a related work on Burgers' equation by Heywood and Xie" would probably be most 
useful to a reader who seeks help in the details of what follows. 

Let us consider first problems with prescribed pressure drops. To define the corresponding Stokes 
operator, we introduce P(Q) as the completion of J:(Q) in L*(Q). Then for every fe P(Q) there 
exists exactly one w E J:(sZ) such that 

(vw, Vcp) = (f. cp), vcp E JXQ).  (48) 

Moreover, for each w E J:(sZ) there is at most onefc P(Q) satisfying (48). Thus (48) defines a one- 
to-one compndence  between functions f E  P(Q) and functions w in a subspace of J:(Q) that we 
denote by D(A). Writing Aw = -f defines the desired Stokes operator A : D ( i )  -P J*(Q). Its inverse 
A-' is completely continuous and self-adjoint as a mapping i-' : J*(Q) -+ J*(Q). Therefore it 
posseses a sequence of eigenfunctions {a'}, which are complete and orthogonal in both P(n) and 
J?(Q). 

Below, we assume that the inequalities (11 . (I denoting the norm of L2(sZ)) 

llvwll < c2~liiwll if n = 2 or 3 

are valid for every WED(&.  They may be valid for arbitrary bounded two- or three-dimensional 
domains in analogy with a recent result for the Laplacian by Xie.16 However, to date, the only known 
proofs of (49) in the situation of Figure 5 require that r and the Si are smooth and meet at right angles 
(or nearly so) and that the domain is two-dimensional: see e.g. Reference 17. 

Galerkin approximations rr" = CF=, ch(t)d are defined for the pressure drop problem (1 1) as 
solutions of the finite system of equations (for simplicity we denote urn by u) 

(u,, cp) + v(Vu. Vcp) = -(u - Vu, cp) - Pi (50) 
1 s, 

In seeking steady solutions, ut = 0 and (50) is a system of algebraic equations for constant unknowns 
c h .  In seeking non-stationary solutions, (50) is a system of ordinary differential equations and its 
solutions are required to satis@ the initial conditions (u(0) - ug, cp) = 0, Vcp E span(ul, . . . , a"), 
where uo is the prescribed initial velocity. The underlying estimates for the existence theorems below 
are obtained by setting cp = u or cp = -An in (SO). The latter is possible because 
Au E span{o', . . . ,a"'), since {d) is a spectral basis. 

cp n dS, Vcp E span(a', . . . , d" ). 
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where the constant c3 depends on Sobolev's and Po ind ' s  inequalities and c4 depends on a trace 
inequality, we obtain from (50) the inequality 

This limits llVull to the right side of the parabola in Figure 12. 
VllVUll 5 c3 llVuIl2 + c4P. (53) 

The estimate (53) shown in Figure 12 suggests the following theorem. 

Theomrn 5 

For P = Ci lPil < $/4c3c4 there exists a steady smooth solution of the variational problem (1 l), 
and of its equivalents (1 2) and (39), satisfying 

The main points to be shown in proving this are first that the algebraic equations (50) have solutions 

To prove the solvability of the finite-dimensional problems (50), we use Brouwer's fixed point 
u" and then that the solutions u" satisfy the estimate (54). 

theorem, applying it to the mapping w+ u defined by the linear problem 

v(Vu, Vcp) + ( w .  vu, q) = - c Pi j cp * n  a, vcp E span{a', . . . ,arn), (55 )  

whert for brevity the superscript rn has again been dmpped, u = P .  These linear equations are 
uniquely solvable if w lies in the ball (54), because then = 0 is the only solution of the corresponding 
homogeneous equation (Pi = 0). Indeed, if w satisfies (54) and u satisfies (55) with the Pi = 0, then 

i s, 

V 
vllVul12 < c,llVwllllVu1I2 < c3 - llVu1I2, 

2c3 

which implies that u = 0. To see that the mapping w + u takes the ball defined by (54) into itself, 
suppose that w satisfies (54). Then, similarly to (53), we obtain 

vllVull G c311v~llllvu112 + c4P 

F i g m  12. I f  Y is a steady solution of tbc prcsaibcd mean pressure proMan (formulation (1 I), (12) or (39)) with P < v/4c3c,, 
then its Dirichktwrm IlVwll must hve a value b e  the upper branch of tbc padola or belaw tbe lawabranch. 'Ibawan 5 

gives tbe existmce of a solution with IIV*ll below thc Iowa braach 
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and therefore 

Thus Brouwer’s fixed point theorem can be applied and gives the existence of Galerkin approximations 
satisfying (54). Hence by a standard compactness argument there is at least a subsequence of the 
Galerkin approximations coverging to a weak solution u E Jf( l2)  of the steady problem (1 1). Its 
smoothness is_easily proven if one obtains a further estimate from the Galerkin approximations by 
setting cp = -Au in (50). This gives 

I d  
2dt  -- IlVu(I2 + vllAull2 = (u vu, Au) + c Pi 

i 

Because Lu is solenoidal, one has the rather unusual trace estimate 

which we combine with (49) and (56) to get 

Then, using Young’s inequality, we obtain 

In the steady case this yields an estimate for the Galerkin approximations of the form 

IlAull < c,Ilvu113 + c,P, (60) 

which is then inherited by the solution. The full classical smoothness of the solution can now be 
obtained using the L2-regularity theory for the steady Stokes  equation^.'^ This completes the proof of 
Theorem 5.  For the non-steady problem we have the following results. 

Theorem 6 

For any smooth Pl(r) and any prescribed initial value uo E JY(f2) there exists a positive number T 
and a unique smooth solution u of the non-steady problem (1 l), and of its equivalents (12) and (39), 
which is defined on at least the initial time interval 0 < t < Tand satisfies u(0) = uo. The solution exists 
for all r 2 0 if P = sup, a 1 IP,(t)l and JJVuo)) ace sufficiently small. It is also exponentially stable if 
these quantities are small enough. These results are all valid in both two and three dimensions. 

The basic estimates for this theorem ace obtained by setting cp = -AM in (SO) and proceeding as 
above to obtain (58) and (59). It is clear that (59) can be integrated on some interval 0 < r c T. Hence 
the proof of the existence of a solution with full classical regularity can be completed by the methods 
of References 13-15. Uniqueness is proved below. This completes the proof of the first part of the 
theorem. 
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To prove global existence for small data, lirst use the third of the inequalities (49) together with (58) 
to get 

(61) 
d 2 
dt - llvu112 + (v - 2c,cy211vull)(lL112 < $9. 

Then, on any time interval during which llVull < v/~c,c:/~, (61) and (49) imply 

This is easily seen to imply that (IVu(f)II < v / ~ c , c ~ / ~  for all t 2 0 if llVuoII d v / ~ c , c : / ~  and 

The inequalities (5 1 H 6 2 )  are valid for both two and three dimensions. They do not use the full 
power of the two-dimensional inequality (49). Using that, one obtains in place of (59) the two- 
dimensional estimate 

P < v Z / J ( 3 2 C 2 ) C * C ~ .  

This can be integrated for all time, regardless of the size of the data, provided that Ilu(r)ll and 
$ IlVu(s)l12 dr remain finite. The natural way to attempt to show that these quantities remain finite is to 
set cg = u in (50), getting the energy identity 

and then estimate the terms on its right side. The trace inequality 

I, ( u * n ) 2 U  G c611~112 

for solenoidal functions can be used to sharpen the estimate (51), as follows: 

c711ulls/411~u117/4 if n = 2, 

cgllull I I V U ~ ~ ~  if n = 2 or 3. 

However, wen the two-dimensional version of (66) combined with (64) yields only 

and hence only a local energy estimate for large data. It leads neither to a qualitative improvement in 
Theorem 6 nor to a large-data global existence theorem for weak, solutions even, in two dimensions. 

The inequality (66) does facilitate the treatment of uniqueness, continuous dependence on the initial 
data and simple energy stability. If w = v - u is the difference of two solutions of (1 1) or of (50), we 
obtain 

I d  
2dt -- 11W1l2 + VllVWll2 = -(u vw, w) - (w - vu, w)  - (w - vw, w) 

V C C 
G llvwl12 + ; s ~ l u 1 2 1 1 w l 1 2  + 2 llvu11411wl12 + cgllwllIIvwI12, 
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using the second, two- or three-dimensional version of (66) in estimating the last term. Hence 

Uniqueness and continuous dependence on the data can be easily deduced from (68). From (69) we can 
see that small perturbations w(t) of u(t) decay exponentially if u(t) is small. 

All the results of Theorems 5 and 6 have analogues for the prescribed net flux problem. In pmving 
them, we do not estimate u directly, but rather the term denoted by v in problem (15). That is, we fix 
the choice of smooth solenoidal flux carriers b2 and b3 and then rewrite (15b) in terms of the new 
unknown v. This introduces many additional terms of the forms Fi(bi-Vv,cp),Fi(v-Vbi,cp), 
&(Vbi, Vcp) and Fiq(bi.  Vbj, cp), but none of these causes essential new difficulties. Even for large 
data one can estimate them by a well-known technique of Leray and Hopf. However, for large data the 
term (v - Vv, cp) causes the same difficulties as the term (u Vu, cp) does for problems with prescribed 
pressure drops. The Stokes operator for the flux problem is defined just as for the pressure problem, 
except that one uses the basic space Jl(Q) in place of J:(Q). in prescribing an initial value uo for 
problem (1 5 )  or its equivalents, one must of course ensure that it satisfies the compatibility conditions 

Is, uo n ds = Fi(0). 

In summary, we obtain the following. 

Theorem 7 

If F E Ci IFi I is sufficiently small, there exists a steady smoot$ solution of problem (1 5), and of its 
equivalents (16) and (41). For any smooth &{t) and any uo E J ,  (a) satisfying (70), one has results 
precisely analogous to those stated for the prescribed pressure drop problem in Theorem 6. 

Mathematical theory has been very valuable to computational practice for many years, in many ways 
and in particular for suggesting variational formulations of problems and the Galerkin method of 
constructing solutions. The results of this section ensure that the problems proposed in Section 3 are 
well posed and appropriate for numerical computation, at least in the case of small data. in its present 
state, however, the existence theory for the Navier-Stokes equations is too rudimentary to serve as a 
sharp knife giving decisive answers in the case of large data. That is especially true when one sets free 
boundary conditions on inflow boundaries. We have not, however, experienced any difficulties in our 
computations for such problems. 
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